g) Evaluación

Actividades de evaluación	Punteo neto	% de la nota final
Primer Parcial	20 pts	20%
Segundo Parcial	20 pts	20%
Tercer Parcial	20 pts	20%
Laboratorio (Tareas, investigaciones,	20 pts	20%
exámenes cortos, experimentos, etc.)		
Zona	80 pts	80%
Examen Final	20 pts	20%

CALENDARIO DE EXAMENES PARCIALES Y FINAL

SECCION	PARCIAL 1	PARCIAL 2	PARCIAL 3	FINAL
Α				
В				
E				

h) Bibliografía

Libro de texto:

Giambattista. Alan; McCarthy, Betty & Richardson, Robert. 2,009. FISICA. Primera Edición. Editorial Mcgraw-Hill. México.

Otras referencias:

- Blatt, F. 1991. FUNDAMENTOS DE FISICA. Tercera edición. Editorial Prentice Hall. México.
- 2. Cromer, A.. 1994. FISICA PARA LAS CIENCIAS DE LA VIDA. Segunda edición. Editorial Reverté, S.A. España.
- Cutnell, J.; Johnson, K.. 1998. FISICA. Editorial Limusa, S.A. Grupo Noriega Editores. México.
- Hewitt, P. 1999. FISICA CONCEPTUAL. Editorial Addison Wesley Longman, Grupo Pearson Educación. México.
- 5. Serway, R., Faughn, J. & voille, C. 2010. FUNDAMENTOS DE FISICA. Octava Edición. Cengace learning editores. México.
- Serway, R., Faughn, J. 2005. FISICA. Sexta Edición. Editorial Thomson México.
- Typens, P. 2001. FISICA, Conceptos y Aplicaciones. Sexta edición. Editorial McGraw-Hill. México.
- 8. Wilson, J. 1996. FISICA. Segunda edición. Editorial Prentice Hall Hispanoamericana, S.A. Grupo Pearson Educación. México.

Universidad de San Carlos de Guatemala Facultad de Ciencias Químicas y Farmacia Área Físico-Matemática Primer semestre del 2018

FÍSICA II

a) Información general del curso:

Carreras y códigos: QB(032112), QF(033112), QQ(031123).

Ciclo: TERCERO

Créditos: 3

Docentes: Ing. César García Sección A

Ing. Noé Gálvez Sección B
Ing. Luis Reyes Sección E

Auxiliar: Héctor Martinez

Requisito: Física I

Inicia: 18/01/18 Finaliza: 04/05/18

Teoría: Edificio T11

Lunes y Martes de 7:00 a 8:00 Salón 102 Sección A Jueves y Viernes de 7:00 a 8:00 Salón 103 Sección B

Viernes de 7:00 a 9:00 Salón 105 Sección E

Laboratorio: Edificio S12

Martes de 12:15 a 14:15 Salón 202 Sección A Lunes de 12:15 a 14:15 Salón 204 Sección B Miércoles de 11:10 a 13:10 Salón 205 Sección E

b) Descripción del curso

Este curso está integrado por 5 unidades en donde se proporcionan los aspectos básicos sobre algunas propiedades mecánicas de la materia, estática y dinámica de fluidos, propiedades térmicas de los cuerpos, la cuantificación dela energía transmitida por calor, la Naturaleza de la Luz y la Óptica geométrica. Se enseñan algunas aplicaciones prácticas, realizando experimentos sencillos tanto en el aula como en trabajos extra-aula.

Física II sirve como fundamento teórico en el aprendizaje del contenido de cursos tales como Físico-Química y Física III.

c) Principios y valores:

Al interactuar con sus compañeros de clase y el catedrático del curso, así como en la realización de tareas y pruebas evaluativas, los estudiantes pondrán en práctica y fortalecerán, en un ambiente de armonía, los siguientes principios y valores:

PRINCIPIOS: Consideración a la dignidad del ser humano, actuar en libertad con responsabilidad y formarse, con excelencia, para la vida y el trabajo honesto.

VALORES: Respeto, honestidad, responsabilidad, tolerancia, equidad, excelencia, credibilidad, lealtad, transparencia, perseverancia, prudencia, ética (entre otros).

d) Objetivos generales y específicos:

d.1) Objetivo General

Adquirir los conocimientos necesarios para poder analizar y resolver los problemas relativos a los fenómenos físicos propios de la materia en estado sólido y líquido.

d.2) Objetivos Específicos

- Describir y analizar el comportamiento de algunos cuerposen base a su densidad, peso específico, gravedad específica y propiedades elásticas.
- Describir y analizar un fluido en base a sus propiedades mecánicas básicas y relacionar las distintas variables que lo caracterizan utilizando las ecuaciones de continuidad y de Bernoulli.

- Aplicar los principios fundamentales de la termodinámica para la descripción, análisis y solución de problemas relacionados con los conceptos de temperatura y calor.
- Conocer e interpretar fenómenos relacionados con la propagación de la luz, como reflexión y refracción, dispersión, absorción e iluminación.
- Conocer y aplicar las leyes de la óptica geométrica en la solución de problemas relacionados con la fabricación de lentes e interpretación de imágenes.

e) Metodología

- Método Inductivo-Deductivo (elaboración de modelos matemáticos de fenómenos físicos).
- Clase expositiva
- Estudio de Casos: Análisis y discusión.
- Uso de software y proyector multimedia.
- Práctica asistida con ayudante de cátedra: Laboratorios demostrativos y de reforzamiento.
- Investigación documental y experimentación: Trabajo individual y grupal.

f) Programación de actividades académicas

Unidades	Contenido	Actividades a	Calendarizaci	Modalidad de
J	35.113.113	realizar	ón de	evaluación
			actividades	
1.	Sólidos, líquidos y gases		2 horas por	Calificación
Propiedades	Densidad, Peso específico y	• Clase	semana	de tareas e
Mecánicas de	densidad relativa (gravedad	magistral		investigaci
la materia	específica).		Cada semana	ones
	Esfuerzo, deformación y	 Hojas de 		
	módulos de elasticidad.	trabajo	2 horas por	Pruebas
	 Esfuerzo y deformación por 		semana	cortas por
	tensión.	 Laboratorios 		semana
	 Esfuerzo y deformación por 	participativo	Un mínimo	
	compresión.	s (Resolución	de 2	Pruebas
	 Esfuerzo y deformación por 	de dudas)	investigacio-	parciales
	corte.		nes por uni- dad.	(CEDE)
		 Investigacion 	dad.	
		es		
		documentale		
2.Mecánica	Estática de fluidos:	S		
de fluidos	• Presión en un fluido.			
uc naidos	Principio de Pascal			
	Manómetros			
	Principio de Arquímedes.	Clase magistral	2 horas por	
	Aplicación de empuje:	J	semana	
	determinación de densidad de			
	un líquido y de un sólido.			
	Tensión superficial.			
	Cohesión, adhesión, ángulo de			
	contacto y capilaridad.			
	Dinámica de fluidos:			
	Características generales de	Hojas de	Cada semana	
	los fluidos. Líneas de corriente,	trabajo		
	tubo de flujo.			
	Definición de Caudal			
	Flujo laminar y turbulento.			
	Fluido ideal.			
	 Ecuación de Continuidad y 			

	Ecuación de Bernoulli. Estimación de pérdidas por fricción Aplicaciones: medidor Venturi y atomizador. Efecto Venturi. Ley de Poiseuille y Número de Reynolds. Aplicaciones. Fenómenos de transporte. Difusión, osmosis, movimiento a través de fluidos viscosos, sedimentación y centrifugación.	Laboratorios participativos (Resolución de dudas)	2 horas por semana	Calificación de tareas e investiga- ciones
3. Propiedades térmicas y calorimetría	 Temperatura y calor. Caloría y equivalente mecánico del calor Métodos Termométricos Expansión térmica Capacidad Calorífica y calor específico. Calor latente de fusión y vaporización. Equilibrio térmico Convección, conducción y radiación. Humedad Relativa y Sensación 			Pruebas cortas por semana
4. Naturaleza y propagación de la luz	de Calor Naturaleza de la luz. Teorías. Fuentes luminosas Velocidad de la luz. Mediciones. El espectro electromagnético Ondas, frentes de ondas y rayos. Principio de Huygens Reflexión y refracción. Índices de refracción. Reflexión total interna. Endoscopios Dispersión, absorción e iluminación.	Investigaciones documentales	Un mínimo de 2 investigacio- nes por uni- dad.	Pruebas parciales
5. Óptica geométrica e instrumentos ópticos	Espejos planos Espejos esféricos: Cóncavos y convexos. Lentes. Rayos principales en las lentes y localización de imagen Amplificación de imágenes Aberraciones en las lentes El ojo. Defectos de la visión: miopía, hipermetropía, Astigmatismo Cámara y proyector Microscopios y telescopios			(CEDE)